Outputs of radula mechanoafferent neurons in Aplysia are modulated by motor neurons, interneurons, and sensory neurons.

نویسندگان

  • S C Rosen
  • M W Miller
  • E C Cropper
  • I Kupfermann
چکیده

The gain of sensory inputs into the nervous system can be modulated so that the nature and intensity of afferent input is variable. Sometimes the variability is a function of other sensory inputs or of the state of motor systems that generate behavior. A form of sensory modulation was investigated in the Aplysia feeding system at the level of a radula mechanoafferent neuron (B21) that provides chemical synaptic input to a group of motor neurons (B8a/b, B15) that control closure and retraction movements of the radula, a food grasping structure. B21 has been shown to receive both excitatory and inhibitory synaptic inputs from a variety of neuron types. The current study investigated the morphological basis of these heterosynaptic inputs, whether the inputs could serve to modulate the chemical synaptic outputs of B21, and whether the neurons producing the heterosynaptic inputs were periodically active during feeding motor programs that might modulate B21 outputs in a phase-specific manner. Four cell types making monosynaptic connections to B21 were found capable of heterosynaptically modulating the chemical synaptic output of B21 to motor neurons B8a and B15. These included the following: 1) other sensory neurons, e.g. , B22; 2) interneurons, e.g., B19; 3) motor neurons, e.g., B82; and 4) multifunction neurons that have sensory, motor, and interneuronal functions, e.g., B4/5. Each cell type was phasically active in one or more feeding motor programs driven by command-like interneurons, including an egestive motor program driven by CBI-1 and an ingestive motor program driven by CBI-2. Moreover, the phase of activity differed for each of the modulator cells. During the motor programs, shifts in B21 membrane potential were related to the activity patterns of some of the modulator cells. Inhibitory chemical synapses mediated the modulation produced by B4/5, whereas excitatory and/or electrical synapses were involved in the other instances. The data indicate that modulation is due to block of action potential invasion into synaptic release regions or to alterations of transmitter release as a function of the presynaptic membrane potential. The results indicate that just as the motor system of Aplysia can be modulated by intrinsic mechanisms that can enhance its efficiency, the properties of primary sensory cells can be modified by diverse inputs from mediating circuitry. Such modulation could serve to optimize sensory cells for the different roles they might play.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diverse synaptic connections between peptidergic radula mechanoafferent neurons and neurons in the feeding system of Aplysia.

The buccal ganglion of Aplysia contains a heterogeneous population of peptidergic, radula mechanoafferent (RM) neurons. To investigate their function, two of the larger RM cells (B21, B22) were identified by morphological and electrophysiological criteria. Both are low-threshold, rapidly adapting, mechanoafferent neurons that responded to touch of the radula, the structure that grasps food duri...

متن کامل

Afferent-induced changes in rhythmic motor programs in the feeding circuitry of aplysia.

A manipulation often used to determine whether a neuron plays a role in the generation of a motor program involves injecting current into the cell during rhythmic activity to determine whether activity is modified. We perform this type of manipulation to study the impact of afferent activity on feeding-like motor programs in Aplysia. We trigger biting-like programs and manipulate sensory neuron...

متن کامل

Effect of a serotonergic extrinsic modulatory neuron (MCC) on radula mechanoafferent function in Aplysia.

The serotonergic metacerebral cells (MCCs) and homologous neurons in related mollusks have been extensively investigated within the context of feeding. Although previous work has indicated that the MCCs exert widespread actions, MCC modulation of sensory neurons has not been identified. We characterized interactions between the MCCs and a cell that is part of a recently described group of bucca...

متن کامل

Frequency-dependent regulation of afferent transmission in the feeding circuitry of Aplysia.

During rhythmic behaviors, sensori-motor transmission is often regulated so that there are phasic changes in afferent input to follower neurons. We study this type of regulation in the feeding circuit of Aplysia. We characterize effects of the B4/5 interneurons on transmission from the mechanoafferent B21 to the radula closer motor neuron B8. In quiescent preparations, B4/5-induced postsynaptic...

متن کامل

Feeding neural networks in the mollusc Aplysia.

Aplysia feeding is striking in that it is executed with a great deal of plasticity. At least in part, this flexibility is a result of the organization of the feeding neural network. To illustrate this, we primarily discuss motor programs triggered via stimulation of the command-like cerebral-buccal interneuron 2 (CBI-2). CBI-2 is interesting in that it can generate motor programs that serve opp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 83 3  شماره 

صفحات  -

تاریخ انتشار 2000